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An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal
incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The
steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of
electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown
that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the
strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a
strong axial quasistatic magnetic field Bz. In the overdense regime, the generated quasistatic magnetic field
increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that,
in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields �100 MG and
greater due to the transverse linear mode conversion process.
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I. INTRODUCTION

Recently, with the arrival of laser systems capable of de-
livering light pulses of extremely high intensities �IL�0

2

�1020 W cm−2 �m2� in the subpicosecond regime and with
high temporal contrast, the problem of the generation of qua-
sistatic magnetic �QSM� fields by laser pulses in plasmas has
become one of the most important issues in the physics of
the interaction of ultraintense laser radiation with plasmas
�1–15�. This problem has interest both fundamentally and for
applications, such as particle acceleration and inertial con-
finement fusion �16,17�, x-ray generation, and the radiation
of pulsars �18�.

Such spontaneous magnetic fields can be generated by
several mechanisms, including nonparallel density and tem-
perature gradients in the ablated plasma �1�, the ponderomo-
tive force associated with the laser radiation itself �2,3�, and
the current of fast electrons generated during the interaction
�4�. However, there still does not exist a well-established and
satisfactory theory, in particular, for the generation of the
QSM fields in overdense plasmas. Indeed, numerical simula-
tions carried out by Wilks et al. �2� for the interaction of an
ultraintense laser pulse with an overdense plasma target pre-
dict extremely high QSM fields, about 250 MG. Recently,
QSM fields that are of the order of a few hundred megagauss
have also been observed in the overdense region of an irra-
diated solid target by relativistic laser irradiation �5,6�. How-
ever, these immense fields cannot be properly explained on
the basis of existing theories. Sudan �3� suggested that the
spatial gradients, and the nonstationary character of the pon-
deromotive force, may lie at the origin of the strong azi-
muthal QSM fields. Kim et al. �7� and Berezhiani et al. �8�
also pointed out that in interactions of ultraintense laser
pulses with underdense plasmas the sources of axial mag-
netic field generation are the electron density and laser inten-

sity inhomogeneities. Here, we attempt to extend their ideas
to the case of overdense plasmas, and develop a systematic
treatment of the phenomenon of the generation of QSM
fields by relativistically strong laser pulses propagating in an
initially uniform overdense cold plasma.

In the present paper, a self-consistent analytical model
describing this scenario is presented. Our model, which is
fully relativistic, includes the inward push and steepening of
the plasma electron density profile by the light pressure of
the ultraintense laser. That is, the electron density profile is
determined self-consistently by the charge-separation field
created by the inward compression of the electrons with re-
spect to the stationary ions �which do not have time to react
on the ultrashort laser-driven electron time scale� and the
laser ponderomotive field �19,20�. When a high-intensity
Gaussian laser pulse with a finite spot size irradiates an ini-
tially uniform plasma, the zero-frequency ponderomotive
force of the electromagnetic radiation ���0� pushes out the
plasma electrons from the region of its localization, and cre-
ates electron cavitation. The cavitation is surrounded by
high-density shoulders which are due to the compression and
shock formation as the cavitation is created. Since both the
electron density N0 and the relativistic factor �0 have a
strong space dependence around the cavitation, the inhomo-
geneity of �0

−1N0 will always lead to a large induced azi-
muthal current in the skin layer. It is also shown that only a
circularly polarized laser pulse can produce such induced
azimuthal currents, and therefore strong axial QSM fields Bz.
Furthermore, in a moderately overdense plasma with initial
plasma density several times the critical density, we found
that transverse linear mode conversion happened, resulting in
a strong axial QSM field as high as �100 MG. It should be
stressed that, without the formation of the electron cavita-
tion, the normal incidence of laser pulses will not lead to
linear mode conversion. The formation of the cavitation is
the key step in the generation of QSM fields in overdense
plasmas �2�. Such a description is not yet available in the
literature, to the best of our knowledge.*caihonb@yahoo.com.cn
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The paper is organized as follows. In Sec. II, the basic
equations describing this scenario are presented. In Sec. III,
the formation of the electron cavitation and the spatial con-
tour of the laser amplitude are discussed. In Sec. IV, the
transverse linear mode conversion and the generation of azi-
muthal current are discussed in detail. In Sec. V, the genera-
tion of the QSM fields and their dependence on the laser
intensity and plasma density are analyzed. In Sec. VI, a sum-
mary of the results is given.

II. BASIC EQUATIONS

We consider an ultraintense and ultrashort Gaussian laser
pulse with a finite spot size irradiating a solid-density plasma
normally from the z direction. On this time scale �t�1 ps�,
the plasma density is not affected by the usual hydrodynamic
plasma expansion. We shall assume an initial homogeneous
plasma density at z�0, where z=0 is the vacuum-plasma
interface. The ion motion during the process of interest is
negligible and will be ignored. Furthermore, the quiver ve-
locity of the electron in the laser field is much higher than
the electron thermal velocity, so that the plasma can be as-
sumed to be cold. Combining B=��A and Ampère’s law,
we obtain

c2�2A − �t
2A = 4�ceneu + c � ��t	� + 4�cenev , �1�

�2	 = 4�e�n − Zni� , �2�

where u and v are the transverse and longitudinal compo-
nents of the electron velocity, satisfying � ·u=0 and ��v
=0, A and 	 are the vector and scalar potentials satisfying
the Coulomb gauge � ·A=0, ne �ni� is the electron �ion� den-
sity, and Z is the ion charge number. Starting from the equa-
tion of motion for electrons, we obtain

P� = �e/c�A , �3�

�tPl = e � 	 − mc2 � � , �4�

where P�=m�u, Pl=m�v, and the relativistic factor �= �1
−u2 /c2−v2 /c2�−1/2. Since usually �u�� �v�, it becomes �
= �1−u2 /c2�−1/2��1+ �a�2�1/2, where a=eA /mc2 is the nor-
malized vector potential and 
0 the laser frequency. We con-
sider that the vector potential has the form a�z ,r , t�
=a0�z ,r , t�+ ã1�z ,r , t�, where a0�z ,r , t� denotes the quasi-
static part of the vector potential, and ã1�z ,r , t� denotes the
normalized vector potential, given by

ã1�z,r,t� =
1

2
a1�z,r,t�exp�− r2/rL

2�exp�− �t − tp�2/tL
2�exp�i
0t�

+ c.c., �5�

where r=�x2+y2 is the radius in cylindrical coordinates, rL is
the spot size, and tL is the pulse duration. In particular,
a1�z ,r , t�=a1�z ,r , t��ex+ i�ey�, and �= ±1 denotes the circu-
larly polarized laser. In such a case, the normalized ampli-
tude in vacuum can be described by a1�z ,r , t�=aL�ex

+ i�ey��exp�ik0z�+exp�−ik0z+ i���, where k0=
0 /c is the
wave number in vacuum, and aL is the amplitude of the

incident laser. It should be stressed that �=�r+ i�i. The real
part denotes the phase shift and the imaginary part deter-
mines the damping of the reflected wave. Fourier expand �,
	, ne, and v, e.g., ��z ,r , t�=�0�z ,r�+ �̃1�z ,r , t�+¯, with
�̃1�z ,r , t�= 1

2�1ei
0t+c.c., where

�0 =

0

2�
	

0

2�

�1 + �a�2�1/2dt � �1 + �a1�2�1/2,

�1 =

0

2�
	

0

2�

�1 + �a�2�1/2 cos 
0t dt = 0.

For the zero-frequency component �denoted by the sub-
script 0� of the electron motion, �tv0�0; therefore, Eqs. �2�
and �4� give �19,20�

��0 = �
0, �6�

N0 − Ni = ��
2�0 + ��

2 �0, �7�

where N0=ne0 /nc, Ni=Zni /nc, 
0=e	0 /mc2, and �= �
0 /c�z,
and in the derivation of Eqs. �6� and �7� and the following
equations we also introduce these dimensionless quantities:
�=
0t, �L=
0tL, �= �
0 /c�r, and �L= �
0 /c�rL. Equation �6�
describes how, in the region where the electron density N0
�0, the ponderomotive force ��0 must be compensated by
the force of the longitudinal field due to space-charge sepa-
ration. Equation �7� tells us that under strong laser radiation
the electron density profile is determined by the zero-
frequency ponderomotive force. Although a similar model
has already been discussed �20–22�, we will emphasize that
the analysis of this physical problem is also applicable to the
interaction of a high-intensity Gaussian laser pulse with a
finite spot size with overdense plasmas, which is a three-
dimensional problem. Furthermore, we know that, when a
high-intensity Gaussian laser pulse with a finite spot size
irradiates an initially uniform plasma, the zero-frequency
ponderomotive force of the electromagnetic radiation ���0�
pushes out the plasma electrons from the region of its local-
ization, and creates electron cavitation. The formation of the
electron cavitation therefore will cause a lot of interesting
physics, e.g., the generation of QSM fields, which will be
discussed in the following.

It is important to emphasize that in such overdense plas-
mas �at least tens of the critical density�, it is difficult for an
electrostatic plasma wave to develop, and the electromag-
netic component dominates the 1
 wave equation. There-
fore, we can safely neglect the electrostatic component �	1
and v in the 1
 wave equation for laser radiation. Note that
a1�� ,� ,�� is a slowly varying function of �, in contrast to
exp�−�2 /�L

2�. Hence, ���a1 exp�−�2 /�L
2���a1���exp�−�2

/�L
2��. On the other hand, a0�� ,� ,�� and a1s�� ,� ,��

=a1�� ,� ,��exp�−�2 /�L
2�exp�−��−�p�2 /�L

2� are also supposed
to be slowly varying in time, i.e., ��

2�a1se
i����2i��a1s

−a1s�ei�. Under these approximations, the 1
 wave equation
becomes
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��
2a1��,�,�� + i�2a1��,�,�� + �1 − 4�1 − �2/�L

2�/�L
2

− N0/�0�a1��,�,�� = 0, �8�

where �2=4���−�p� /�L
2�. From Eqs. �7� and �8�, we can de-

termine the whole spatial profile of the normalized vector
potential. It should be mentioned that, since the zero-
frequency electron density N0 is a function of � under high
ponderomotive pressure, Eq. �8� will have different solutions
at different transverse positions �. Furthermore, the complex
amplitude can be defined by a1�� ,� ,��=ar+ iai, where ar and
ai denote the real and imaginary parts of the laser amplitude,
respectively. Therefore, Eq. �8� can be rewritten into two
coupled real equations: ��

2ar=�2ai+ �N0 /�0+4�1−�2 /�L
2� /�L

2

−1�ar, and ��
2ai=−�2ar+ �N0 /�0+4�1−�2 /�L

2� /�L
2 −1�ai,

which are the wave equations for laser radiation. Together
with Eqs. �6�–�8�, we obtain

��
2�0 = �0

−1�1�ar��
2ar + ai��

2ai + ���ar�2 + ���ai�2

− �1�0
−2�ar��ar + ai��ai�2� , �9�

��
2 �0 = − 8�1�ar

2 + ai
2��1 − 2�2/�0

2�L
2�/�0�L

2 , �10�

where we have made use of the relations �0
=�1+�1�a1�� ,� ,���2 and �1=exp�−2�2 /�L

2�exp�−2��
−�p�2 /�L

2�. In Eqs. �6�–�10�, we have also neglected the in-
fluence of the generated magnetic field. The reason is that the
corresponding gyrofrequency is much smaller than the car-
rier frequency.

From the above analysis, we conclude that a possible sta-
tionary solution of the model equations considered may in-
clude a depletion region at the vacuum-plasma boundary,
where ion charges are uncompensated. In this region, the
ponderomotive force is unbalanced and pushes all electrons
forward inside the plasma, thus shifting the actual electron
plasma boundary from �=0 to a new position �b= f���
�vacuum-plasma interface�. The new interface f��� can be
determined along with the constraint given by total charge
conservation. The integral over the whole plasma space of
Eq. �7� gives

	
0

f���

Nid� = 	
f���

�

�N0 − Ni�d� = − ����0� f��� + 	
f���

�

��
2 �0d� ,

�11�

which determines the position of the effective vacuum-
plasma interface �b= f���. If this constraint is not satisfied,
the spatial profile of the electron density will not satisfy the
quasineutrality condition. In the region �� f���, including
the pure ion layer �0��� f����, the electromagnetic field
a1�� ,� ,�� corresponds to a vacuum solution. We note that, at
the effective vacuum-plasma interface �b= f���, the trans-
verse electromagnetic fields are continuous, that is, the solu-
tions of Eq. �8� must be matched to the vacuum solution
�21,22� a1(f���− ,� ,�)=a1(f���+ ,� ,�), ��a1(f���− ,� ,�)
=��a1(f���+ ,� ,�); and at �=� the boundary condition is that
the wave is evanescent. Equations �8�–�11� can be solved
numerically, and the self-consistent spatial variations of the

vector potentials and the electron density can be obtained
from these nonlinear equations.

III. FORMATION OF ELECTRON CAVITATION

In the highly relativistic regime �aL�1�, any spatial
variation of the laser intensity will act to push electrons to
the regions of lower intensity through the zero-frequency
ponderomotive force, which can approach the thermal pres-
sure �NekTe� at solid density �1024 cm−3�. When a high-
intensity Gaussian laser pulse with a finite spot size irradiates
an initially uniform plasma, the zero-frequency ponderomo-
tive force of the electromagnetic radiation ���0� pushes out
the plasma electrons from the region of its localization, and
creates electron cavitation. In the axisymmetric case, we can
express the effective interface of the electron cavitation as
�b= f��� �this has been discussed above�. Note that, at differ-
ent transverse positions �, the interface has different values.
In the center of the spot ��=0�, the electrons are most
strongly pushed since the laser intensity peaks here, i.e.,
max
f����= f�0�. Under such a strong laser pressure, the
electrons in the cavitation are pushed a small distance into
the target and piled up in a narrow region with �� f���,
leaving behind a thin layer of ions in the electron cavitation
�N0=0 in the region �� f����. For �� f���, the spatial profile
of the electron density N0 can be obtained from Eqs. �7�, �9�,
and �10�,

N0 = �0
2�Ni + ��

2 �0� + �1�0
�4�1 − �2/�L
2�/�L

2 − 1��ar
2 + ai

2�

+ ���ar�2 + ���ai�2 − �1�0
−2�ar��ar + ai��ai�2� . �12�

Equation �13� describes how the electrons are piled up by
the zero-frequency ponderomotive force. Since the vector
potential and its space derivative decrease rapidly in the
overdense plasma, the electrons are only piled in the skin
layer. Furthermore, it should be pointed out that, within the
framework of the current model equations �which are being
widely exploited for the problem of relativistic self-focusing
of electromagnetic �EM� beams�, one cannot prevent the oc-
currence of unphysical, negative values for the electron den-
sity when ��2�0��Ni. This failure of the hydrodynamic
model of a plasma is generally corrected by putting Ne=0 in
the entire spatial region where Ne�0 �8�.

The ponderomotive force of a laser pulse with a small
spot size will tend to expel electrons from the region of the
axis, so-called “electron cavitation,” as shown in Fig. 1.
However, it should be pointed out that the electron density
never becomes strictly zero in the cavitating region, which is
a limitation of the hydrodynamical model �8�. Fortunately,
the electron density in this region turns out to be a few orders
of magnitude smaller than its original value because of the
relativistic laser intensity, and therefore the pure ion layer
approximation in electron cavitation is applicable. The spa-
tial variations of the vector potential can also be calculated
numerically from Eqs. �8�–�11�. As expected, in the region
�� f���, the vector potential is a vacuum solution, while in
the region �� f��� the vector potential decreases rapidly into
the overdense plasma �23�; as shown in Fig. 2.
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IV. GENERATION OF INDUCED AZIMUTHAL CURRENT

As with most problems involving fluids, one can write
down a continuity equation for the mass, or in this case
charge density: ��Ne+� · �NeP /�0�=0. As in Sec. II, we Fou-

rier expand Ne and P into Ne=N0+ Ñ1+¯ and P=P0+ P̃1

+¯, with Ñ1�� ,� ,��= 1
2N1ei�+c.c. and P̃1�� ,� ,��= 1

2P1ei�

+c.c. Therefore, we obtain

��Ñ1 + � · �N0P̃1/�0� = 0. �13�

To obtain an equation for the 1
 electron density, we

substitute ��P̃1�−Ẽ1=��ã1+�
̃1 and �2
̃1= Ñ1 into Eq. �13�
and then make use of the Coulomb gauge � ·a1=0, to get

N1 = �2
1 =
ia1 · ����

�
, �14�

where �=1−N0 /�0 is the dielectric function of the plasma.
Note that as long as the laser electric field has a component
along the gradient of � linear mode conversion �LMC� oc-
curs �24�, which results in an electrostatic Langmuir oscilla-
tion N1 at the laser frequency. Furthermore, Eq. �14� shows
that the electron oscillation and hence N1 are greatly en-
hanced as N0��0. Since in an overdense plasma the vector
potential drops rapidly with distance into the plasma, the
relativistic factor cannot be very large in the skin layer �as
shown in Fig. 2�. Therefore, from Eq. �14� we know that, if
the initial plasma density is about several times the critical
density, Ni� �1,5�, the electron oscillation will be greatly
enhanced. In the nonrelativistic regime, LMC is well studied
for the oblique incidence of a p-polarized laser onto an in-
homogeneous plasma layer �24,25�. As is known, the LMC is
only for p polarization where the electric field has a compo-
nent parallel to the e� direction, the direction in which the
density gradient is considered.

However, we found that LMC would happen even for a
normally incident relativistic laser with a finite spot. Let us
recall Sec. III and notice that electron cavitation is formed

when such a relativistic laser pulse irradiates a plasma.
Therefore, the electron density, both in the e� direction and in
the transverse directions to the laser propagation, may have
spatial density gradients. Notice that the laser field oscillates
in the transverse directions, therefore, LMC can occur for
this case, and thus a 1
 electron density fluctuation is stimu-
lated. However, it should be stressed that, without electron
cavitation, the normal incidence of laser pulses will not lead
to LMC. On the other hand, since the electrons are oscillat-
ing helically in the light wave with the velocity ũ1= ã1 /�0, an
azimuthal current J�= 
N1u1�� is generated, where 
¯�� de-
notes averaging over the fast optical time scale. This is the
physical explanation of the quasistatic azimuthal current.

Equation �14� can further give N1=−i�−1a�����0
−1N0�.

Here we have used the relation ��→0, which means that the
plasma-field structures are axisymmetric. Notice that the nor-
malized vector potential also takes the form

ã1��,�,�� = �1/2��e� + i�e��a1��,�,��exp�− �2/�L
2�

�exp�− �� − �p�2/�L
2�exp�i�� + c.c.,

where �= ±1 denotes a circularly polarized laser and �=0
denotes a linearly polarized laser. Thus, the induced azi-
muthal current J� is given by

J� =
�
�0

−1�a1�2����0
−1N0���

1 − N0/�0
. �15�

As discussed above, from Eq. �15�, we know that in a
moderate-density plasma �Ni� �1,5��, the electrons are
driven away from the center of the spot by the ponderomo-
tive force of a laser pulse with a finite spot size, and piled in
the skin layer. In this case, large induced azimuthal currents
can be generated since the dielectric function �=1−N0 /�0 is
very small. Therefore, the maximum value of the axial QSM
field turns out to be several hundreds of megagauss or even
109 MG �5�. It is important to stress that, in the limit Ni�1,
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2� at time �=�p. Here the white dashed line is
the effective vacuum-plasma interface. Parameters are aL=5, �L
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Eq. �15� can be approximated by J�=�
�0
−1�a1�2����0

−1N0���,
which recovers the relation discussed by Kim et al. �7� and
Berezhiani et al. �8�. But an important difference is that, in
our theory, the electric field may resonantly excite a large
electrostatic plasma wave in the transverse directions, which
results in large azimuthal currents and therefore strong axial
QSM fields.

However, in the overdense regime �Ni�1�, much smaller
induced azimuthal currents are expected since the dielectric
function �=1−N0 /�0�−Ni. It should be mentioned that, in
our model, the density profile immediately adjacent to the
cavitation may look like a jump, which means that large
azimuthal surface currents might be generated on the bound-
ary of the cavitation. However, in the case of a tightly fo-
cused relativistic laser pulse irradiating an overdense plasma,
this resonance region is very narrow �6�. Therefore, only two
oppositely directed azimuthal currents might be generated
close to the resonance point �=0 on this boundary. But one
can easily see that the effects of such currents on the axial
QSM field offset each other, so the collective effect of the
currents on the boundary of the cavitation can be safely dis-
regarded, and only the induced currents in the skin layer are
dominant.

Figure 3 shows the spatial contours of the induced azi-
muthal current J� at time �=�p in an overdense plasma with
Ni=20. Clearly, the induced quasistatic azimuthal current
only exists in the skin layer around the cavitation. Further-
more, there is no azimuthal current at �=0 because
����0

−1N0� is zero here. Such azimuthal currents will result in
the generation of a strong axial QSM field, which peaks on
the axis �=0. The physical explanation is the following.
When a laser beam with a finite spot size propagates in an
initially uniform plasma, the ponderomotive force of the EM
radiation ���0� pushes out the plasma electrons from the
region of its localization, and creates an effective plasma
density inhomogeneity. Since both the electron density N0
and the relativistic factor �0 have a strong space dependence,
the inhomogeneity of �0

−1N0 will always lead to large in-

duced azimuthal currents. Notice that only the circularly po-
larized laser pulse can produce the induced azimuthal cur-
rents, and therefore the axial QSM field B�.

V. GENERATION OF QUASISTATIC MAGNETIC FIELDS

In the present work we deal with the generation of quasi-
static magnetic fields by relativistically strong laser pluses
irradiating overdense plasmas. In this case, we confine our
attention to circularly polarized laser pulses for which axial
QSM fields should appear according to the Ampère law. In
the following we will show that the generation of the axial
QSM fields takes place due to the formation of electron cavi-
tation caused by the intense laser beam itself.

From Ampère’s law ��B0=J0+��E0 and E0=−��a0
−�
0, we have ��B0�−����
0�+J0. The quasistatic cur-
rent J0= 
N1u1��. Therefore, we obtain ��B0�−����
0�
+ 
N1u1��. Substituting Eq. �14� into this equation, we obtain

� � B0 � − ����
0� − i�−1
�0
−1a�a1����0

−1N0���. �16�

It is easy to interpret this equation physically. The first term
on the right-hand side �RHS� of Eq. �16� is the usual dis-
placement current term, which results in the generation of
azimuthal QSM fields B� and has been analyzed in Ref. �3�.
Here, we will focus on the generation of the axial QSM
fields B� in an overdense plasma. The second term on the
RHS of Eq. �16� is the induced azimuthal current J�, which
has a form analogous to the one considered in Refs. �7,8�,
where an underdense plasma was considered. In these papers
�7,8�, the plasma densities are assumed to be very low and
thus the physical quantities can be assumed to be homoge-
neous in the propagation direction. However, our interest in
this work is in the overdense regime, in which the longitudi-
nal �propagation direction� variations of the vector potentials
and electron density have to be considered. Furthermore, the
denominator �=1−N0 /�0 in Eq. �16� is missing in Refs.
�7,8�, and therefore the linear conversion process is not taken
into consideration in that work.

Substituting Eqs. �6� and �7� into Eq. �16�, the spatial
variations of the axial QSM field B� can be determined
�8,11�. From the spatial distribution of the azimuthal current
�see Fig. 3�, we can expect that the strength of the magnetic
field has a maximum value on the beam axis �=0 in the
beam propagation area, then decreases, changes polarity, and
rapidly tends to zero as �→�. Here, what we care about
mostly is the peak axial QSM field B�m�max
B��.

Figure 4 shows how the peak axial QSM field B�m de-
pends upon the incident laser amplitude for fixed initial
plasma density Ni. One can see that at relativistic intensities
B�m increases for fixed Ni=20 and growing intensity. Since
higher intensity leads to stronger spatial inhomogeneity of
the electron density, one can expect that B�m will be higher.
However, it turns out that the higher electron density in the
skin layer caused by the laser pressure eliminates this effect.
As shown in Fig. 4, when aL�4, the increase of B�m slows
down. Figure 5 shows that the peak axial QSM field B�m
decreases with increasing initial plasma density for fixed la-
ser amplitude. One can see that on the whole B�m is only
several megagauss, which cannot be as high as the magnetic
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FIG. 3. �Color online� Spatial contours of the induced azimuthal
current J� at time �=�p. Here the white dashed line is the effective
vacuum-plasma interface. Parameters are aL=5, �L=5�0, �L=30T0,
Ni=20.
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field of laser radiation. However, in a moderately overdense
plasma �Ni� �1,5��, the fields can be quite strong for high-
intensity laser radiation since the transverse linear mode con-
version process will happen.

VI. CONCLUSION

In conclusion, we have developed a self-consistent model
to explore the generation mechanisms of the QSM field in
interactions of ultraintense and short laser pulses with over-
dense plasmas. The model, spanning a large range of inter-
action conditions �1018� IL�0

2�1020 W cm−2 �m2, 10�Ni
�80�, revealed that the formation of the electron cavitation
plays an important role in the generation of the axial QSM
field. Because of the strong plasma inhomogeneity caused by
the formation of this cavitation, a low-frequency drag current
is induced, J�=��−1
�0

−1�a1�2����0
−1N0��, which produces a

large QSM field B� in the beam propagation area, according
to Ampère’s law. In all of these cases, the axial QSM field
peaks on the beam axis. Furthermore, we found that the laser
intensity and the initial plasma density are crucial param-
eters: our results show that the QSM field increases with
increasing laser intensity but decreases with increasing
plasma density. It is also found that in an overdense plasma
with Ni�1, the QSM field is smaller than what was found in

previous publications. In a moderately overdense plasma
with Ni� �1,5�, however, the generated QSM fields can
reach considerable magnitudes since transverse linear mode
conversion will happen.

However, it should be pointed out that, when the initial
plasma density Ni� �1,5�, the QSM fields can be as high as
108 G or greater; therefore, the corresponding gyrofre-
quency is of the order of the carrier frequency, and the influ-
ence of the QSM fields on the equation of electron motion
cannot be neglected. In this case the analysis is no longer
straightforward.

ACKNOWLEDGMENTS

We gratefully acknowledge X. T. He, C. Y. Zheng, L. H. Cao,
Y. W. Tian, Z. J. Liu, B. Qiao, H. Y. Niu, S. Z. Wu, and J. Y.
Wei for fruitful discussions. This work was supported by the
National Hi-Tech Inertial Confinement Fusion �ICF� Com-
mittee of China, the NSF of China �NSFC� Grants No.
10135010, No. 10335020, No. 10375011, No. 10474081, No.
10575013, and No. 10576035, the Natural Science Founda-
tion of Shanghai Project No. 05ZR14159, the Special Funds
for Major State Basic Research Projects of China, and the
Science Foundation of CAEP.

�1� J. A. Stamper, J. M. Dawson, K. Papadopoulos, R. N. Sudan,
S. O. Dean, and E. A. Mclean, Phys. Rev. Lett. 26, 1012
�1971�.

�2� S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys.
Rev. Lett. 69, 1383 �1992�.

�3� R. N. Sudan, Phys. Rev. Lett. 70, 3075 �1993�.
�4� A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 76, 3975

�1996�.

�5� M. Tatarakis, I. Watts, F. N. Beg, E. L. Clark, A. E. Dangor, A.
Gopal, M. G. Haines, P. A. Norreys, U. Wagner, M.-S. Wei, M.
Zepf, and K. Krushelnick, Nature �London� 415, 280 �2002�;
M. Tatarakis et al., Phys. Plasmas 9, 2244 �2002�.

�6� U. Wagner et al., Phys. Rev. E 70, 026401 �2004�.
�7� A. Kim, M. Tushentsov, D. Anderson, and M. Lisak, Phys.

Rev. Lett. 89, 095003 �2002�.
�8� V. I. Berezhiani, S. M. Mahajan, and N. L. Shatashvili, Phys.

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

a
L

P
ea

k
A

xi
al

Q
S

M
F

ie
ld

(M
G

)

FIG. 5. Peak axial QSM field as a function of the initial plasma
density. Parameters are �L=5�0, �=�p, �L=30T0, aL=5.

2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

a
L

P
ea

k
A

xi
al

Q
S

M
F

ie
ld

(M
G

)

FIG. 4. Peak axial QSM field as a function of the incident laser
amplitude. Parameters are �L=5�0, �=�p, �L=30T0, Ni=20.

CAI et al. PHYSICAL REVIEW E 76, 036403 �2007�

036403-6



Rev. E 55, 995 �1997�.
�9� M. G. Haines, Phys. Rev. Lett. 78, 254 �1997�; L. Gorbunov,

P. Mora, and T. M. Antonsen, ibid. 76, 2495 �1996�.
�10� M. Borghesi, A. J. MacKinnon, A. R. Bell, R. Gaillard, and O.

Willi, Phys. Rev. Lett. 81, 112 �1998�.
�11� Z. M. Sheng and J. Meyer-ter-Vehn, Phys. Rev. E 54, 1833

�1996�; M. D. Feit, A. M. Komashko, S. L. Musher, A. M.
Rubenchik, and S. K. Turitsyn, ibid. 57, 7122 �1998�.

�12� A. R. Bell, J. R. Davies, and S. M. Guerin, Phys. Rev. E 58,
2471 �1998�.

�13� R. J. Mason and M. Tabak, Phys. Rev. Lett. 80, 524 �1998�.
�14� C. Y. Zheng, X. T. He, and S. P. Zhu, Phys. Plasmas 12,

044505 �2005�; S. P. Zhu, X. T. He, and C. Y. Zheng, ibid. 8,
321 �2001�.

�15� B. Qiao, S. P. Zhu, C. Y. Zheng, and X. T. He, Phys. Plasmas
12, 053104 �2005�.

�16� M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C.
Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, Phys.
Plasmas 1, 1626 �1994�.

�17� R. Kodama et al., Nature �London� 412, 798 �2001�.
�18� P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 �1969�.
�19� W. Yu, M. Y. Yu, Z. M. Sheng, and J. Zhang, Phys. Rev. E 58,

2456 �1998�.
�20� H. B. Cai, W. Yu, S. P. Zhu, and C. Y. Zheng, Phys. Plasmas

13, 113105 �2006�.
�21� F. Cattani, A. Kim, D. Anderson, and M. Lisak, Phys. Rev. E

62, 1234 �2000�.
�22� A. Kim, M. Tushentsov, F. Cattani, D. Anderson, and M.

Lisak, Phys. Rev. E 65, 036416 �2002�.
�23� P. Mora and T. M. Antonsen, Jr., Phys. Rev. E 53, R2068

�1996�.
�24� J. M. Kindel, K. Lee, and E. L. Lindman, Phys. Rev. Lett. 34,

134 �1975�.
�25� Z. M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev.

Lett. 94, 095003 �2005�; T. Speziale and P. J. Catto, Phys.
Fluids 20, 990 �1977�.

GENERATION OF STRONG QUASISTATIC MAGNETIC… PHYSICAL REVIEW E 76, 036403 �2007�

036403-7


